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Automatic Identification of Human Subgroups in
Time-Dependent Pedestrian Flow Networks
Wenhan Wu , Wenfeng Yi, Jinghai Li, Maoyin Chen , Member, IEEE, and Xiaoping Zheng

Abstract—The study of identifying human subgroups from
videos is a significant topic, which has received a lot of attention
in multiple disciplines. So far, however, there has been little
consideration about combining it with relevant conceptions in
network science. Therefore, this article proposes a novel method
for the automatic identification of human subgroups in dynamic
pedestrian flows. The spatial proximity and temporal continuity
are combined to calculate the interaction intensity between
pedestrians, by which a time-dependent pedestrian flow network is
constructed. Based on the objective function of weighted partition
density, the optimal threshold is used to determine community
structures that correspond to human subgroups in frame images.
Numerical experiments demonstrate that our method achieves
high identification accuracy under various evaluation datasets,
and exhibits better performance than existing methods in terms of
different crowd densities, various numbers of subgroup members,
and certain levels of trajectory noise. Furthermore, this work
provides valuable implications for the understanding of subgroup
behaviors and the modeling of subgroup movements.

Index Terms—Video analysis, human subgroups, automatic
identification, network science, crowd behavior.

I. INTRODUCTION

N ETWORK science covers almost all disciplines and has
been widely employed to address systemic problems in

the human world [1]. The topological structure plays a key role
in determining the function of networks, which is reflected in
various networks such as social networks, biological networks,
and financial networks [2]. Despite that numerous actual net-
works have complex topological structures, the hierarchical or-
ganization of them is also apparent. As an intermediate layer
between the single node and the complete network, the com-
munity plays a significant role in the structure and evolution of
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complex networks [3]. The nodes within the same community
are tightly linked and have a high similarity, while those in differ-
ent communities are loosely connected. With the in-depth study
of network science, community detection has been considered as
a significant research topic in this field. The community detec-
tion algorithms in existing literature have developed in two main
aspects: non-overlapping community detection and overlapping
community detection [4]. These techniques are essential for un-
derstanding the structural features and functional properties of
complex systems.

For non-overlapping community detection algorithms, each
node in the network can only be categorized into one com-
munity. Traditional clustering-based algorithms [5], [6] were
able to discover non-overlapping communities in specific net-
works. However, these methods may suffer from issues such as
insufficient partition accuracy and peripheral nodes being ig-
nored. Modularity [7], as an indicator for measuring partition
performance, has been widely used for objective optimization
in community detection algorithms [8]. Several studies in re-
cent years have also attempted to maximize modularity by spec-
tral optimization [9] and deep learning [10]. It is notable that
modularity-based algorithms have resolution limits [11], requir-
ing additional consideration when detecting communities. In re-
ality, large-scale networks often have overlapping features, and
the study of overlapping community detection has become an-
other important direction. The clique percolation method based
on the conception of k-cliques was proposed to perform stan-
dard component analysis on the clique–clique matrix to discover
overlapping communities [12]. The link-based algorithm treated
a community as a set of links rather than nodes, and detected
overlapping communities by cutting the link dendrogram un-
der the optimal partition density [13]. In addition, mathematical
methods (e.g., Bayesian inference [14], non-negative matrix de-
composition [15]) were adopted to explore the implicit informa-
tion of overlapping communities from the aspect of statistical
inference or matrix analysis.

It is well known that human activities are common in var-
ious public places (e.g., station squares, commercial streets,
and subway corridors) [16]. Due to the diversification of build-
ing layouts and pedestrian facilities, the complex patterns of
crowd movements can be classified into unidirectional, bidi-
rectional, and multidirectional flows [17]. A large number of
research findings have been revealed in these dynamic pedes-
trian flows, involving typical aspects such as behavioral charac-
teristics, fundamental diagrams, and self-organization phenom-
ena [18]. However, most studies are limited in the framework
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of crowd dynamics and are rarely combined with network sci-
ence. As a result, we innovatively regard the dynamic pedestrian
flow recorded in the surveillance camera as a time-dependent
network. This kind of network is composed of network slices at
different times, and nodes in a network slice correspond to pedes-
trians appearing on the screen at a certain time. Here, subgroups,
as an intermediate layer from individuals to human crowds, are
prevalent in dynamic pedestrian flows, because those pedestri-
ans with social relationships tend to walk with their peers [19].
Note that there might be different names (e.g., social groups,
pedestrian groups, and small groups.) in various publications,
which are uniformly called “subgroups” in this article. Regard-
ing the understanding of human collective behavior, the defi-
nitions of subgroups are mainly based on socio-psychological
conceptions involving entities [20], interdependence [21], so-
cial identity [22], and self-categorization theory [23]. Most pre-
vious studies judged subgroups manually based on relevant
definitions, however, these methods are very time-consuming,
making the automatic identification of subgroups an important
issue.

Identifying subgroups from human crowds has received a lot
of attention in a wide range of fields. Due to the prevalence
of surveillance equipment and mobile cameras, many studies
have sought to accomplish subgroup identification through com-
puter vision techniques. Ge et al. [24] and Solera et al. [25] ex-
cavated the similarity features among subgroup members and
proposed trajectory clustering algorithm-based algorithms to
identify small groups. Besides, critical pedestrian features were
also incorporated into the task of subgroup identification. Qin
et al. [26] provided a general framework for coupling contex-
tual information, social grouping, and computer vision tasks. Li
et al. [27] developed a novel framework based on multi-level
group descriptors by combining semantic information. The In-
ternet of Things (IoT) and Virtual Reality (VR) are regarded
as important supplements to data collection methods [28], and
contribute more open ideas for the automatic identification of
subgroups. Du et al. [29] presented a mobile device-based iden-
tification method for group mobility level and group structure,
with relatively high accuracy in real situations. Zhou et al. [30]
adopted VR equipment to extract the social characteristics of in-
dividuals and developed a social interaction field model to accu-
rately predict static and dynamic social groups. So far, however,
little attention has been paid to echo the subgroup identifica-
tion in dynamic pedestrian flows with the community detection
in network science. Even though it is enormously challenging
since the dynamic properties of network structures, this work
is still a promising attempt to identify subgroups in realistic
environments.

In this article, we propose a novel method for the automatic
identification of subgroups in dynamic pedestrian flows. The
subgroups are defined as those who are geographically close
to each other and attempt to walk together consistently, whose
spatial-temporal characteristics are regarded as the crucial fac-
tors in our method. The spatial proximity and temporal continu-
ity are combined to calculate the interaction intensity between
pedestrians, which is served as the link weight for construct-
ing a time-dependent pedestrian flow network. After that, the

weighted partition density is introduced to determine the opti-
mal threshold, which can be employed to achieve the commu-
nity partition. Numerical experiments on six (i.e., five public and
one self-built) evaluation datasets demonstrate the effectiveness
of the proposed method. Compared with existing methods, our
method exhibits better identification performance under certain
conditions of the crowd density, the number of subgroup mem-
bers, and the level of trajectory noise. Therefore, this work pro-
vides a general framework for identifying pedestrian subgroups
automatically and contributes to the understanding of subgroup
behaviors.

The rest of this article is organized as follows. The proposed
method of subgroup identification is presented in Section II.
Section III provides a series of performance evaluations in detail.
Finally, the main conclusions and further prospects are discussed
in Section IV.

II. SUBGROUP IDENTIFICATION METHOD

Fig. 1 shows a general framework of the proposed method.
First, the input is the trajectory data extracted from the video,
which is used for calculating the interaction intensity between
pedestrians to construct a pedestrian flow network. Then, the op-
timal threshold is determined based on weighted partition den-
sity, and the community structure in the network can be identified
by this threshold. Last, the output is the identification results cor-
responding to the community partition. The specific details of
each step in this framework are described below.

A. Interaction Intensity Between Pedestrians

Based on the definitions in related socio-psychology litera-
ture, we suggest that subgroups consist of pedestrians who are
geographically close and attempt to walk together consistently.
From the aspect of spatial-temporal dimensions, this involves
spatial proximity and temporal continuity. To quantify the inter-
action between pairwise pedestrians, the interaction intensity is
deduced in subsequent contents.

The spatial proximity of subgroups is caused by the social
interaction among members, which is mainly reflected in three
observables: the relative distance dij(t) between the positions
of pedestrians i and j, the relative speed vij(t) of pedestrian j
with respect to pedestrian i, and the relative angle ϕij(t) with
which pedestrian j is perceived by pedestrian i. To extract the
contributions of these observables to the interaction, a key as-
sumption in general biological considerations is that they can
be decoupled from each other and constitute a product form, in
analogy to the case of physical particles [31]. This assumption
has been demonstrated to characterize the main features of ac-
tual interactions [32], thereby the spatial proximity function can
be represented explicitly as follows:

αij(t) = f (dij(t)) g (vij(t))h (ϕij(t)) (1)

in which interaction functions f(dij), g(vij), andh(ϕij) are for-
mulated from realistic data, rather than being prefabricated [33].
The fact is that these observables tend to remain stable within
certain ranges if a pair of pedestrians belong to the same sub-
group, otherwise there will be a wide range of fluctuations.
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Fig. 1. General framework of the proposed method. First, the trajectory data is treated as the input to calculate the interaction intensity between pedestrians
and construct a pedestrian flow network. Then, the optimal threshold is determined by weighted partition density to partition the community structure. Last, the
identification results reflected by the community partition are regarded as the output.

Hence, the distributions of observables are first extracted, and
then certain mathematical functions are selected to fit them.

The temporal continuity of subgroups depends on the psy-
chological tendency to move towards a common destination,
whereby the historical temporal series of spatial proximity is
considered. The newer sampled data has a larger weight in judge-
ment, tallying with the short-term memory of human vision.
Therefore, we adopt the exponentially weighted moving average
(EWMA) method [34] to characterize the temporal continuity
function βij(t− kΔt), which reflects the influence weight of
spatial proximity between pedestrians i and j at time t− kΔt
on the interaction intensity at the current time t:

βij (t− kΔt) =
(1− τ)k∑�tij
x=0 (1− τ)x

=
τ(1− τ)k

1− (1− τ)�
t
ij+1

(2)

where Δt represents the time step between frame images, and
�tij = [t−max(tsi , t

s
j)]/Δt denotes the number of trajectory

data points concerning pedestrians i and j until time t, in which
tsi and tsj are the moments when they appear on the screen, re-
spectively. Besides, the smoothing factor τ measures the degree
of weight reduction, with a larger τ reflecting a faster weight
decay of earlier data.

Based on the above discussion and deduction, the functions
of spatial proximity and temporal continuity can be linearly in-
tegrated into the interaction intensity, whose mathematical form
is expressed by:

Iij(t) =

�tij∑
k=0

αij(t− kΔt)βij(t− kΔt) (3)

Here, a larger Iij(t) implies that the likelihood of pedestrians
i and j belonging to the same subgroup is higher. In general,
Iij(t) and Iji(t) are close but unequal, because the impact of
relative angle is not completely symmetrical.

B. Time-Dependent Pedestrian Flow Networks

Existing research has confirmed that most networks in natu-
ral and social systems are time-dependent and evolve dynami-
cally [35]. In this case, the dynamic pedestrian flow recorded in
the surveillance camera can be defined as a time-dependent net-
work, which is composed of network slices at different times.
The weighted adjacency matrix W(t) is used to describe the
structure of the network slice at time t, where nodes and link
weights in the network slice are respectively denoted by pedes-
trians and their average interaction intensities in frame image
Γ(t), which reads:

W(t) =

⎡
⎢⎢⎢⎣
w11(t) w12(t) · · · w1Nt

(t)
w21(t) w22(t) · · · w2Nt

(t)
...

...
. . .

...
wNt1(t) wNt2(t) · · · wNtNt

(t)

⎤
⎥⎥⎥⎦ (4)

where Nt stands for the number of pedestrians at time t, the
average interaction intensity between pedestrians i and j is de-
fined as wij(t) = (Iij(t) + Iji(t))/2, and therefore, W(t) is a
symmetric matrix with wij(t) = wji(t).

The network slices correspond exactly to the frame images
segmented by the time step Δt in the video. Considering that
pedestrians on the screen often change over time, the weighted
adjacency matrixW(t) at a different time t generally has various
dimensions. Here, the time-dependent pedestrian flow network
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Ω is defined as a finite set, written as follows:

Ω = {W(t) |t = t0, t0 +Δt, . . . , t0 + (T − 1)Δt} (5)

where t0 is the initial time of the video, and T indicates the
total number of network slices. Note that the interslice coupling
between nodes at different times is ignored, because the partition
of subgroups corresponds to the set of independent partitions on
each network slice.

C. Identifying Subgroups by Weighted Partition Density

Regarding the community partition in pedestrian flow net-
works, a graph partition method is proposed in advance. The
network slice at time t can be regarded as an unweighted and
undirected graphG(t) = (V (t), E(t)), whereV (t) andE(t) are
the sets of vertices and edges, respectively. The partition process
depends on the previously defined average interaction intensity
wij(t) at different levels, a pre-specified threshold w∗ ∈ [0, 1] is
introduced to judge whether the edge eij(t) between pedestrians
i and j are retained as below:

eij(t) =

{
1, wij(t) > w∗

0, wij(t) ≤ w∗ (6)

Here, edge eij(t) exists if the average interaction intensity
is relatively high, otherwise it will be removed. As a result,
graph G(t) is partitioned into multiple connected subgraphs
{G1(t), . . . , GC(t)}, noting that those unconnected vertices are
not considered as independent subgraphs. The structures of com-
munities {P1(t), . . . , PC(t)} exactly correspond to the topolo-
gies of subgraphs {G1(t), . . . , GC(t)}, that is, these edges in
subgraphs imply those reserved links in communities.

Inspired by the process of cutting the link dendrogram [13],
we further consider defining the weighted partition density as
an objective function to measure the partition effect of com-
munities. For a community Pc(t) at time t, it has nc(t) =
|∪wij(t)∈Pc(t){i, j}| nodes and mc(t) =

1
2

∑
{i,j}∈Pc(t)

eij(t)
present links, and the sum of link weights is calculated as
wc(t) =

1
2

∑
{i,j}∈Pc(t)

wij(t). Thereby, the weighted link den-
sity Dw

c (t) is expressed as follows:

Dw
c (t) =

wc(t)− wmin (nc(t)− 1)

wmaxnc(t) (nc(t)− 1)/2− wmin (nc(t)− 1)
(7)

where the maximum link weight wmax is fixed as 1, and the
minimum link weight wmin is equal to w∗. That is, wc(t) is
normalized by two extreme sums of link weights, which corre-
spond to subgraphs on nc(t) vertices with minimum and maxi-
mum edge connectivity, respectively. For a network slice withC
communities at time t, the weighted partition density Dw(t|w∗)
is defined as the average of Dw

c (t), weighted by the fraction of
present links under the condition of w∗:

Dw(t|w∗) =
2

M(t)

C∑
c=1

mc(t)
wc(t)− w∗ (nc(t)− 1)

(nc(t)− 2w∗) (nc(t)− 1)
(8)

where the sum of present links ofC communities is calculated as
M(t) =

∑C
c=1 mc(t). The temporal average of Dw(t|w∗) from

initial time t0 to last time tmax is therefore given by:

〈Dw(t|w∗)〉t =
Δt

tmax − t0 +Δt

tmax∑
t=t0

Dw(t|w∗) (9)

Here, a higher 〈Dw(t|w∗)〉t implies a better global structure of
these partitioned communities.

Determining the optimal value of w∗ is important to accu-
rately identify subgroups. The fact is that all nodes in a network
slice belong to a large community if w∗ is close to 0, whereas
each node is treated as an isolated individual if w∗ approaches
1. Both of the above extreme situations are unreasonable, with
relatively small values of 〈Dw(t|w∗)〉t. In consequence, we tra-
verse the interval of w∗ at a certain spacing Δw∗, and calculate
〈Dw(t|w∗)〉t at each level of w∗. Note that the number of val-
ues taken on the interval of w∗ is counted as Sw. The optimal
threshold w∗

opt is deduced as below:

w∗
opt = argmax 〈Dw(t|w∗)〉t

s.t. w∗ ∈ {0,Δw∗, 2Δw∗, . . . , 1} (10)

From this, the best partition of communities would be obtained
under the condition of w∗

opt. To better understand the effect of
threshold selection on the identification performance, please see
the examples given in Fig. 5. There may also be meaningful com-
munity structures under other thresholds, however, the purpose
of finding w∗

opt is to make subgroup identification closer to hu-
man subjective perception.

III. PERFORMANCE EVALUATION

A. Evaluation Datasets and Metric

Before assessing the performance of identification methods,
it is necessary to establish corresponding evaluation datasets.
First, we adopted a series of standard procedures to extract
12,326 pedestrian trajectories at Bashu Secondary School in
Chongqing, China (see Supplementary Materials). However, the
density, speed, and flow of pedestrians are complicated and vari-
able in this area, which makes it unrepresentative to arbitrar-
ily select a video sequence as the evaluation dataset. Thereby,
1,158 frame images were extracted from the video by sampling
at equal intervals to ensure that the characteristics of human
crowds at various time periods are covered, and 5 participants
were invited to independently mark the labels of subgroups.
These participants recorded the IDs of subgroup members by
perceptual judgements, and made auxiliary judgements using
video sequences within a certain range before and after these
frame images. The judgement criteria are based on social in-
teractions such as conversation, gestures, laughter, smiles, and
play [36]. Those labels of subgroups on which more than half
of the participants reached consensus are finally ascertained
as correct samples (including duplicate cases), and this self-
build evaluation dataset is labeled as BS_canteen in subsequent
contents.

Moreover, five public datasets recorded in different natural
environments were also selected to enhance the reliability of
performance evaluation. The two datasets named Seq_eth and
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TABLE I
SPECIFIC DETAILS OF EVALUATION DATASETS

TABLE II
CONFUSION MATRIX OF THE BINARY CLASSIFICATION

Seq_hotel were collected at 2.5FPS, covering low-density sce-
narios near a college building and a bus station [37]. The next two
datasets called Crowds_zara01 and Crowds_zara02 captured the
movement of crowds with a frame rate of 25FPS [38], which
were taken at a low-density shopping street. The last dataset la-
beled VEG_gall, which was recorded in Vittorio Emanuele II
Gallery at 8FPS [39], is a five-minute sequence with rapid and
continuous changes in crowd density. We annotated subgroups
in these datasets using a similar method as before to create the
evaluation datasets, and Table I presents the specific details in-
volving the number of pedestrians (No. P), subgroups (No. S),
and sampling frame images (No. SFI), as well as the type of
pedestrian flow (Flow Type).

To evaluate the consistency between identification results and
human judgements, the F1-score is introduced as an evaluation
metric. For binary classification problems, the confusion matrix
is a standard representation of accuracy assessment. As shown in
Table II, the subgroups correctly identified by relevant methods
are regarded as true positives (TP), the subgroups not success-
fully identified as false negatives (FN), whereas the subgroups
that are identified but inconsistent with the correct samples as
false positives (FP) [30]. Given that subgroup identification fo-
cuses more on positive results, true negatives (TN) are therefore
not discussed in our case. From this, the F1-score is defined
as the harmonic mean of Precision and Recall, calculated as
follows:

F1-score =
2× Precision× Recall

Precision + Recall
(11)

where Precision = TP/(TP + FP) is the number of TP re-
sults divided by the number of all results declared positive, and
Recall = TP/(TP + FN) is the number of TP results divided
by the number of all true samples.

It is worth emphasizing that the subgroup labels are marked
on sampling frame images, rather than directly providing the
subgroup labels for the whole video as in most studies. The rea-
son for this is that the members of partial subgroups change

dynamically in the process of movement [40]. For instance, as-
suming that pedestrians i and j belong to a subgroup {i, j}
in the previous period, whereas this subgroup disintegrates
{i, j} → {i}, {j} or reorganizes {i, j} → {i, j, k} in the later
period. In this case, the subgroup label should be adjusted, in-
stead of remaining {i, j} throughout the process. In addition,
it is unreasonable to compare the judgement results on sam-
pling frame images with the subgroup labels at the video level.
Therefore, the subgroup labels at the frame image level are more
rigorous, which is also beneficial for a more accurate calculation
of the F1-score.

B. Identification Results of the Proposed Method

The first step in our method is to extract the interaction func-
tions for deducing the mathematical form of spatial proxim-
ity function. For any individual in a time-dependent pedestrian
flow network, the interaction with the nearest neighbor is the
most noteworthy. If they belong to a subgroup, the observables
of relative distance, relative speed, and relative angle generally
will remain stable within certain ranges, which results from a
trade-off between walking faster and facilitating social interac-
tions [41]. In contrast, there will be large fluctuations in observ-
ables if a pedestrian and the nearest neighbor are not members
of a subgroup. That is, those intervals with high frequency in the
distributions of observables reveal the interaction preference be-
tween neighboring members of subgroups. These distributions
are expected to be fitted for determining the interaction func-
tions, which can be further utilized to calculate the spatial prox-
imity between pairwise pedestrians.

By conducting statistical analysis, it is amazing that these
variables are found to follow similar distributions in various
datasets. First, the distribution of relative distance reflects that
the neighboring members of subgroups are more likely to keep
a preference distance, which is fitted well by the log-normal
distribution function:

f(dij) =
Ad√
2πσdij

exp
[
−(ln dij − μ)2/2σ2

]
(12)

where μ and σ > 0 are the mean and the standard deviation
of logarithmic values, respectively. Second, the distribution of
relative speed is consistent with the exponential distribution as
the neighboring members of subgroups tend to walk at close
speeds, whereby the function is expressed as follows:

g(vij) = Avλ exp (−λvij) (13)

where λ > 0 denotes the rate parameter. Third, the distribution
of relative angle indicates that the neighboring members of sub-
groups prefer to stand orthogonal to the walking direction, and
the anisotropy of relative angle can be described in the form of a
Fourier series expansion [32], with at most two non-zero modes
being enough to fit the distribution:

h(ϕij) = Aϕ (a0 + a2 cos(2ϕij) + a4 cos(4ϕij)) (14)

where ai (i = 0, 2, 4) are the non-zero Fourier coefficients. Note
that Ad, Av , and Aϕ are scale factors used to control the value
domain of interaction functions within [0, 1]. Fig. 2 depicts the
curves of interaction functions extracted from various datasets,
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Fig. 2. Interaction functions extracted from various datasets. (a) f(dij) as an interaction function of relative distance dij . (b) g(vij) as an interaction function
of relative speed vij . (c) h(ϕij) as an interaction function of relative angle ϕij . The curves with different colors correspond to various datasets.

TABLE III
FITTING PARAMETERS IN INTERACTION FUNCTIONS

among which these subtle differences are caused by a variety
of factors such as personal features [42] and environmental in-
fluences [43]. The fitting parameters in interaction functions are
listed in Table III, and we also use a t-test to confirm the ra-
tionality of each parameter. As a result, if the observables of
pairwise individuals are more in accordance with the interaction
preference between neighboring members of subgroups, the spa-
tial proximity calculated by these interaction functions will be
closer to 1.

The reason why the three observables involving distance,
speed, and angle are selected is worth explaining here. In fact,
distance is the primary concern in previous studies, because
many classical clustering algorithms (e.g., K-means) are based
on distance metrics. After that, the impact of speed or angle
is gradually taken into account due to the walking pattern of
subgroups. According to this, the spatial proximity function is
assumed to be constructed by the interaction functions of one
or two observables. Fig. 3(a) indicates that pedestrians A and
B who approach face to face may be incorrectly identified as
belonging to a subgroup if only distance is considered. If dis-
tance and speed are combined, it is likely to be misjudged as
a subgroup in the case of pedestrian A following pedestrian B
in Fig. 3(b). If the combination includes distance and angle, as
illustrated in Fig. 3(c), pedestrian A with slower speed would
be wrongly assigned to a faster subgroup of pedestrians B and
C. These results demonstrate that all three observables are in-
dispensable, which are also in line with those mentioned factors
in a pioneering research [44].

Fig. 3. Effect of interaction functions on the identification performance of
the proposed method. (a) Under the conditions of αij = f(dij). (b) Un-
der the conditions of αij = f(dij)g(vij). (c) Under the conditions of
αij = f(dij)h(ϕij). All three cases are compared with the case under the
conditions of αij = f(dij)g(vij)h(ϕij).

The next part is concerned with the temporal continuity func-
tion, in which smoothing factor τ has a key impact on the iden-
tification performance. A theoretical analysis is performed in
Fig. 4(a) to interpret the identification effects in extreme cases.
τ → 0 denotes that the weights of data in the historical temporal
series are almost the same. Due to the over-reliance on earlier
data, incorrect judgements may be created when the subgroup
members change dynamically. On the contrary, τ → 1 means
that no data in the historical temporal series will be considered
in the current judgement. Even if a small disturbance could af-
fect the identification results, resulting in poor robustness of the
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Fig. 4. Effect of smoothing factor τ on the identification performance of the
proposed method. (a) A theoretical analysis of identification effects in extreme
cases (τ → 0 and τ → 1). (b) Performance evaluation under different values
of smoothing factor τ . The curves with different colors correspond to various
evaluation datasets, and the optimal range is highlighted in grey.

proposed method. Fig. 4(b) shows the performance evaluation
under different values of smoothing factor τ . It is notable that it
has little effect on the datasets (Seq_hotel, Crowds_zara01, and
Crowds_zara02) where most subgroups remain stable, while the
situation is reversed for the datasets (Seq_eth, VEG_gall, and
BS_canteen) with more changes in subgroup members. In gen-
eral, there is an optimal range (in grey) of smoothing factor τ ,
and τ = 0.3 is chosen as a reasonable value in subsequent sim-
ulations.

Once the interaction intensity between pedestrians is calcu-
lated, the optimal threshold can be determined by weighted par-
tition density to identify the community structure. Nonetheless,
we still wonder about the effect of thresholdw∗ on the identifica-
tion performance of the proposed method. As shown in Fig. 5(a),
the cases of low, optimal, and high thresholds are selected on the
basis of 〈Dw(t|w∗)〉t, and examples of the identification results
in frame images are given in Fig. 5(b). These divisions are de-
rived from the network topologies in Fig. 5(c), it is apparent that
the judgement results under the optimal threshold are most in
line with human perception. The analysis reveals the importance
of determining an appropriate threshold for identification perfor-
mance. In this way, the optimal thresholds of various datasets are
calculated as below: 0.096 (Seq_eth), 0.038 (Seq_hotel), 0.020
(Crowds_zara01), 0.037 (Crowds_zara02), 0.098 (VEG_gall),
and 0.047 (BS_canteen). These optimal thresholds are adopted
to realize the community partition in evaluation datasets, and the
snapshots of identified subgroups marked by circles with differ-
ent colors are presented in Fig. 6. These values of the evaluation
metric listed below the snapshots achieve satisfactory results,
which indicates the effectiveness of the proposed method.

C. Quantitative Comparison With Existing Methods

Turning now to the quantitative comparison with existing
methods, we choose one prevalent clustering-based method and
three subgroup identification methods proposed in recent years.
DBSCAN [45], as one of the most classical density-dependent
clustering methods, has been widely used to discover clusters
of arbitrary shape without specifying the number of clusters
in advance. Ge et al. [24] developed a bottom-up hierarchi-
cal clustering method to identify subgroups using a Hausdorff

distance defined according to pairwise proximity and velocity.
Solera et al. [25] established the learning-based method to cap-
ture the affinity between crowd members through a structural
SVM framework and specially designed features, and provided
a correlation clustering procedure to detect subgroups. Zaki
et al. [46] considered the commonality of walking strategies
between nearby pedestrians, and proposed an automated analy-
sis method for discovering subgroups. These three methods are
almost purely dependent on pedestrian trajectories, which is con-
sistent with the fundamental data used in the proposed method.
In the following contents, we conduct several simulations from
different aspects to compare the performance of these methods.

Under the conditions of reasonable parameter settings,
Table IV presents the detailed performance evaluation (Preci-
sion, Recall, and F1-score) of various identification methods.
The performance of our method shows a significant improve-
ment over existing methods, which is reflected in these evalu-
ation datasets. From the principles of existing methods, we ex-
pect to find some reasons for explaining the performance gaps.
First, DBSCAN merely treats individuals clustered in space as
subgroups, but ignores the implicit common characteristics of
subgroup members. It exhibits the worst effects compared to
those designed specifically for identifying subgroups, and this
method is therefore not further analyzed in subsequent experi-
ments. Next, the two methods proposed by Ge et al. and Zaki
et al. lack certain sensitivity when the members within a sub-
group change, because the identification results are based on the
closeness between complete trajectories. In addition, although
the method provided by Solera et al. achieves superior perfor-
mance on crowds with variable density, it still has information
loss due to the neglect of other factors such as speed. These re-
sults, while preliminary, show that our method presents better
performance than state-of-the-art identification methods, even if
the Precision is slightly lower under certain evaluation datasets.
The possible reason is that extra subgroup structures deviating
from human perception might be produced in the partition pro-
cess using the optimal threshold, but it has almost no impact on
the overall superiority of our method.

The previous research has pointed out that human subgroups
become less perceptible as the crowd density increases [47],
thereby the impact of crowd density on the identification perfor-
mance is worth studying. The method defined in Supplementary
Materials is utilized to calculate the crowd density in frame im-
ages, whose values are divided into three ranges from low to high
for each dataset. Note that the size of crowd density in various
datasets is independent of each other, and its degree is only rela-
tive to the current dataset. Fig. 7 shows the performance evalua-
tion of various identification methods under different crowd den-
sities. The performance of all methods decreases as the crowd
density raises, which echoes the perceptual differences of sub-
groups in the previous research. However, under most conditions
where the crowd densities are close, the F1-score of the proposed
method is apparently higher than that of other methods. In par-
ticular, the performance advantage is significant at medium and
high densities, which might be related to the fact that these in-
teraction functions are able to effectively capture the preference
characteristics of subgroup members even in crowded situations.
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Fig. 5. Effect of threshold w∗ on the identification performance of the proposed method. (a) 〈Dw(t|w∗)〉t as a function of threshold w∗, where low, optimal,
and high thresholds are selected from top to bottom. (b) Examples of the identification results in frame images. (c) Network topologies corresponding to different
cases in (b). The identified subgroups are marked by circles with different colors.

Fig. 6. Performance evaluation of the proposed method for various evaluation datasets. (a) Seq_eth. (b) Seq_hotel. (c) Crowds_zara01. (d) Crowds_zara02.
(e) VEG_gall. (f) BS_canteen. The snapshots are selected from various evaluation datasets as demonstration examples, and the identified subgroups are marked by
circles with different colors. These values of the evaluation metric are listed below the snapshots in different columns.

As a result, our method has been demonstrated to cope with the
change of crowd density at non-extreme densities and accom-
plish relatively better identification results.

The proportion of subgroup size has been found to follow a
(truncated) Poisson distribution by field observations [41], and
it was also confirmed to change with the environments in diverse

places [48], [49]. We are interested in the identification perfor-
mance of these methods under different numbers of subgroup
members. The previous research has indicated that subgroups
composed of 2 to 4 members are common, whereas those with
more than 4 members are rare [41]. As illustrated in Fig. 8,
the identification accuracy emerges a downward trend with the
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TABLE IV
PERFORMANCE EVALUATION OF VARIOUS IDENTIFICATION METHODS (%)

Fig. 7. Performance evaluation of various identification methods under
different crowd densities. (a) Seq_eth. (b) Seq_hotel. (c) Crowds_zara01.
(d) Crowds_zara02. (e) VEG_gall. (f) BS_canteen. The strips with different
colors correspond to various identification methods, and the error bars represent
standard deviations.

increase of subgroup size, which is attributed to those small sub-
groups (i.e., 2 to 4 members) prone to distinguishing. It can be
seen from Fig. 8(b)–(d) that there are no large subgroups (i.e.,
more than 4 or 5 members) in these evaluation datasets, and cer-
tain existing methods even slightly dominate the identification
accuracy of subgroups with 3 or 4 members, but this does not
influence the superiority of our method in overall performance.
Even for other evaluation datasets where large subgroups exist

Fig. 8. Performance evaluation of various identification methods un-
der different numbers of subgroup members. (a) Seq_eth. (b) Seq_hotel.
(c) Crowds_zara01. (d) Crowds_zara02. (e) VEG_gall. (f) BS_canteen. The
areas with different colors in radar maps correspond to various identification
methods.

in Fig. 8(a), (e), and (f), our method also exhibits better perfor-
mance for different subgroup sizes. Nevertheless, it should be
emphasized that the overall performance of these methods in
identifying large subgroups is relatively poor, in large part be-
cause participants are also more controversial in marking their
labels. This suggests the fact that relevant methods necessitate
focusing more on the identification performance of small sub-
groups.
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Fig. 9. Performance evaluation of various identification methods under differ-
ent levels of Gaussian noise. (a) σN = 0.00. (b) σN = 0.05. (c) σN = 0.10.
(d) σN = 0.20. The numbers in the squares stand for the precise F1-scores (%).

In practice, limited by the conditions of video collection (e.g.,
device performance, environmental factors), there may be a
certain degree of noise in pedestrian trajectory data. Here, it
is supposed that the noise follows a Gaussian distribution as
εi(t) ∼ N (0, σ2

N ), where σN is the standard deviation and its
values are set as 0 (no noise), 0.05, 0.10, and 0.20. These Gaus-
sian noises with different levels are superimposed to each in-
dependent pedestrian trajectory, Fig. 9 displays the correspond-
ing performance of various identification methods. The iden-
tification accuracy of existing methods is still hard to surpass
our method at low and medium levels of noise (σN = 0.05 and
σN = 0.10), whereas our method could be inferior to the meth-
ods proposed by Solera et al. and Zaki et al. on certain evaluation
datasets at a high level of noise (σN = 0.20). It reveals that our
method has a more sensitive tendency to be affected by larger
noise, owing to the strong constraint between the interaction
functions of observables (i.e., similar to “and” in logical oper-
ations). However, it is not a bad thing because those methods
with strong robustness are hard to find the fluctuations in tra-
jectory data, which is not conducive to identifying the changes
in subgroup members. Therefore, our method is able to guaran-
tee better performance by controlling pedestrian trajectories to
a certain noise level.

The final part of this section moves on to discuss the running
performance of our method. The overall computational com-
plexity can be approximately written as O(SwTN

2
t ), which de-

rives from the joint contribution of Sw (the number of values
taken on the interval of the threshold), T (the number of frame
images or network slices), and Nt (the number of pedestrians in
each frame image). It is also worth noting that the former two

elements,Sw andT , depend largely on the initialization settings,
we therefore focus more on the runtime for each frame image
with Nt pedestrians. The code of our method is implemented
in MATLAB (Intel Core i7 CPU, 3.0GHz, 16GB RAM) with-
out pre-specified optimization or parallelization. By traversing
these datasets, the maximum runtime consumed to calculate the
weighted adjacency matrix (i.e., average interaction intensities
between all pairwise pedestrians) for a frame image is fewer
than 3s. Besides, it just requires less than 0.005s to partition
subgroups by weighted partition density on a network slice cor-
responding to the frame image.

IV. CONCLUSION

This article proposes a novel method for the automatic iden-
tification of subgroups in dynamic pedestrian flows. Inspired
by community detection in network science, a time-dependent
dynamic network is constructed by calculating the interaction in-
tensity between pedestrians from spatial-temporal dimensions.
The community structure can be discovered using the opti-
mal threshold, which is determined by the objective function
of weighted partition density. By conducting a series of per-
formance evaluation experiments, several main conclusions are
summarized as follows: 1) The observables of relative distance,
relative speed, and relative angle between pedestrians and their
nearest neighbors follow certain distributions, which can be fit-
ted to form interaction functions for describing the interaction
preference of subgroup members. 2) To some extent, the identi-
fication results determined by the optimal threshold are more in
accordance with those judged by human perception, this is cru-
cial for inferring the community structure and ensuring the iden-
tification performance. 3) Our method shows high accuracy of
subgroup identification under various evaluation datasets. Com-
pared with existing methods, it also significantly improves the
performance in terms of different crowd densities, various num-
bers of subgroup members, and certain levels of trajectory noise.

It is obvious that automatically inferring subgroups from hu-
man crowds from the video is difficult, which poses a huge
challenge for relevant research on subgroups. Therefore, this
work is beneficial for understanding the potential characteristics
of subgroup behaviors. For example, researchers have discov-
ered that subgroups prefer to walk side by side at low density,
form “V”-like or “U”-like shapes at medium density [41], and
present “river-like” structures at high density [50]. How these
spatial configurations of subgroups can be quantitatively ex-
plained by these interaction functions is worthy of exploration.
In addition, it is expected to facilitate the generation of more
realistic models of subgroup movements. The group cohesion
force [41], leader-follower principle [51], and local behaviors
of subgroups [52] have been incorporated into classical crowd
models such as the social force model, cellular automata model,
and agent-based model. Nevertheless, subgroup models with
high generalizability and verifiability are still lacking, whether
these findings on the interaction preference of subgroup mem-
bers can be utilized to construct such models necessitates further
consideration. In a word, the insights gained from this study may
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be of assistance to further research of human subgroups in crowd
dynamics.

Despite that the proposed method has achieved better perfor-
mance for subgroup identification, it is still necessary to indicate
its main limitation. In the process of separating the commu-
nity structure, the perfect community partition on each network
slice may not be determined by the optimal threshold defined
at the global level. This fact is likely to cause a few identifi-
cation results to deviate from human perception, which affects
the performance of our method to a certain extent. As a con-
sequence, determining the optimal threshold at the local level
to achieve the best community partition in each network slice
is expected to be explored in further research. Notwithstanding
this limitation, this article still offers valuable insights for iden-
tifying subgroups. For instance, these interaction functions are
purely extracted from realistic data, rather than being set as spe-
cific similarity functions (e.g., Gaussian kernel function, cosine
similarity function) in a plausible way [53]. Because the prefab-
ricated function is hard to capture the preference characteristics
of subgroup members in different environments, resulting in less
accurate measures of spatial proximity than those data-driven in-
teraction functions. In summary, this work has important impli-
cations for subgroup identification in videos, and also promotes
the understanding of crowd dynamics from the perspective of
network science.
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